Lecture 12

Surfactants and Micelles.
Thermodynamics of Micelle
Formation.

Absorption of surfactants

 surfactants (stands for: surface active agents) belong to a class of amphiphiles

Gibbs monolayers

Absorption of surfactants

- Surfactants can be:
 - anionic (the most used), bear
 negative charge on the hydrophilic part
 - cationic, bear
 positive charge on
 the hydrophilic part
 - non-ionic, not charged, soluble due to polar groups like polyethylene oxide and sugars
 - zwitterionic

Anionic surfactants

Sodium hexadecanoate (palmitate)

Sodium dodecyl benzene sulfonate (an alkyl benzene sulfonate, ABS)

Sodium dodecyl sulfate (SDS)

Cationic surfactants

Hexadecyl (cetyl) trimethyl ammonium bromide (C₁₆TAB)

Dodecyl pyridinium bromide

Non-ionic surfactant

Dodecyl penta(ethylene oxide) (C₁₂E₅)

Unconventional surfactants

 Surfactants can be designed with more than one of polar and non-polar groups:

Absorption of surfactants

 Surface tension of surfactant usually falls to a lower limit and becomes a constant after

Micelles

 above certain critical concentration the surface tension becomes independent of concentration: critical micelle concentration (cmc).

$$-\frac{d\gamma}{RT} = \Gamma_{X_S} d \ln(c_{X_S}) + \Gamma_{X_M} d \ln(c_{X_M})$$

not all amphiphiles form micelles.

- at cmc other properties show distinct changes as well (e.g. osmotic pressure indicate that the number of "solute particles" stays the same above cmc).
- formation of micelles means decrease in G, primarily due to large increase in entropy: hydrophobic interaction.

Micelles: influence of temperature

For **ionic surfactants**:

- ne solubility of surfactants exhibits a sharp rise in above a certain temperature: Krafft rerature. Below Krafft rure solubility is lower the solubility of surfactants
- otherwise, solubility doesn't' temperature bu depends on the ionic strength

for **non-ionic surfactants** raising temperature appears to decrease solubility, so above **cloud point** large aggregates of surfactant appear

solubility is equal to **CMC**

Micelle structure

- the shape of micelle depends of several factors
- at low concentrations micelles are spherical with diameter slightly less than twice the length of the molecule
- at higher concentration, more complex structures are formed
- if organic solvent are used, reverse (inverted) micelles will be formed

Micelle structure

Solubilization

 micelles can increase solubility of otherwise sparingly soluble substances, as the centre of a micelle is a liquid hydrocarbon

Self-Assembly of Amphiphilic Molecules

- sometimes can be hard and solid, but most of the time are soft and fluid like. Commonly referred as complex fluids.
- usually characterized by size distribution
- most important interactions: ionic repulsion of head groups and hydrophobic interaction of the tails.

Thermodynamics of Self-Assembly

 Let's consider surfactant in the solvent and in the micelle:

$$\mu_{sur}(solvent) = \mu_{sur}^0 + RT \ln S$$

 at [S]=CMC the chemical potential of the surfactant in micelles and solution is equal:

$$\mu_{sur}(micelle) = \mu_{sur}^0 + kT \ln CMC$$

the molar Gibbs energy of micelle formation:

$$\Delta G_m^{micelle} = \mu_{sur}(micelle) - \mu_{sur}^0 = RT \ln CMC$$

Thermodynamics of Self-Assembly

 If several aggregated structures are in equilibrium than the chemical potential of surfactant molecules in every structure is the same:

$$\mu = \mu_1^0 + kT \ln X_1 = \mu_2^0 + \frac{1}{2}kT \ln \frac{1}{2}X_2 = \dots = \mu_N^0 + \frac{1}{N}kT \ln \frac{1}{N}X_N$$

Thermodynamics of Self-Assembly

• or, from kinetics

$$k_{1}X_{1}^{N} = k_{N} (X_{N}/N)$$

$$K = k_{1}/k_{N} = \exp\left[-N(\mu_{N}^{0} - \mu_{1}^{0})/kT\right]$$

$$X_{N} = N\left((X_{M}/M)\exp\left[M(\mu_{M}^{0} - \mu_{N}^{0})/kT\right]\right)^{N/M}$$

$$X_{N} = N\left((X_{1})\exp\left[(\mu_{1}^{0} - \mu_{N}^{0})/kT\right]\right)^{N}$$

Formation of aggregates

aggregates are formed if

$$\mu_N^0 < \mu_1^0$$

rod-like aggregates

$$N\mu_N^0 = -(N-1)\alpha kT$$

$$\mu_N^0 = \mu_\infty^0 + \alpha kT / N$$

Formation of aggregates

2D aggregates

$$\mu_N^0 = \mu_\infty^0 + \alpha kT / N^{1/2}$$

3D aggregates

$$\mu_N^0 = \mu_\infty^0 + \alpha kT / N^{1/3}$$

CMC

$$X_{N} = N\left(X_{1} \exp\left[\left(\mu_{1}^{0} - \mu_{N}^{0}\right)/kT\right]\right)^{N} =$$

$$= N\left(X_{1} \exp\left[\alpha\left(1 - 1/N^{\alpha}\right)\right]\right)^{N} \approx N\left[X_{1}e^{\alpha}\right]^{N}$$

• as concentrations cannot be larger than 1 $X_1 < e^{-\alpha}$

$$(X_1)_{crit} = CMC = \exp\left[-\left(\mu_1^0 - \mu_N^0\right)/kT\right] \approx e^{-\alpha}$$

Aggregate distribution above CMC

• discs, p=1/2
$$X_N = N \left[X_1 e^{\alpha} \right]^N e^{-\alpha N^{\frac{1}{2}}}$$

• spheres, p=1/3
$$X_N = N \left[X_1 e^{\alpha} \right]^N e^{-\alpha N^{\frac{2}{3}}}$$

 for disks and spheres there are very few aggregates of finate size, the transition goes to an aggregate of infinite size

• rods, p=1
$$X_N = N \left[X_1 e^{\alpha} \right]^N e^{-\alpha}$$

for rods we expect a polydispersed distribution

Aggregate distribution above CMC

• Mean aggregation number: $N_{\text{max}} = M = \sqrt{Ce^{\alpha}}$

Emulsion stability

 selection of emulsifier determines which type of emulsion will be formed

Bancroft rule: the phase the emulsifier is more soluble in will be the continuous phase

<u>Harkins wedge theory</u>: larger end of the emulsifier lies in the continuous phase

Winsor theory: based on ratio of cohesive energies

$$R = \frac{E_{LO}}{E_{HW}} \hspace{1cm} \text{R<1 O/W emulsion is formed} \\ \text{R>1 W/O emulsion is formed}$$

Emulsion stability

 in case of ionic emulsifier, the droplets will interact via double layers

 Example: stabilization of oil-water emulsions with inorganic electrolytes (e.g. KCNS) due to anions preferably adsorbed in oil

Emulsion stability

- Steric interaction:
 - loss of configuration entropy due to the excluded volume
 - higher osmotic pressure in the region where absorbed layers overlap
 - changes in the conformation of polymer loops due to approached droplet

stabilization by solid particles

Stabilization with solid particles

 For effective stabilization, the particles should assume a stable position on the interface with a non-zero contact angle (Pickering emulsions or solid-stabilized emulsions)

liquid marble on solid surface stabilized with hydrophobic powder

Cheese case

Casein micelles in milk are sterically stabilized by k-casein;

• Active enzyme: Proteinase rennin, originally obtained from calf stomach, currently synthesized in bacterial host, e.g. under a name Chymosin.

• Function: cuts the hydrophilic tail of k-casein, therefore destroying sterical stabilization of casein micelles

Other substances involved: CaCl₂ accelerates aggregation by screening

negative charges

Problems

- A surfactant solution of sodium dodecyl sulfonate (SDS) (concentration 1.7 mmol kg⁻¹) is found to have a surface tension of 63 mN m⁻¹ at 25°C. Calculate the adsorption of the surfactant at the air/solution interface and state the two assumptions that are required. The surface tension of pure water at this temperature is 72.0 mN m⁻¹.
- Estimate CMC for Hexane in water. Surface tension of Hexane-Water interface is 51.1mN/m